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Navigating by the Stars

B. M. Brown’s complaint in the previous chapter against Cesàro’s re-
markable approach to spherical trigonometry might have been made by 
an astronomer or navigator. For the practitioner already in command 
of the important theorems and looking ahead to their uses in science, 
a pit stop to examine elegant alternative approaches is a restless, impa-
tient exercise. While we may value the charm of beautiful mathematics 
on its own, its charm can only be enhanced by witnessing what it can 
do in some physical realization. Th us, it seems appropriate to conclude 
this book with an account of the life- and- death application that gave the 
subject much of its vitality in the past couple of centuries: fi nding one’s 
position on the Earth while in a ship at sea (fi gure 9.1).

As far as we know, trigonometry was fi rst used for navigation by Ve-
netian merchant ships in the 14th century. Plying their trade through 
the Mediterranean and as far away as the Black Sea, Venetians used their 
shipping routes to establish themselves as a dominant economic power. 
Navigators’ personal notebooks, of which several survive, recorded sev-
eral navigational techniques. One of these—the table of marteloio—was 
essentially an application of plane trigonometry. How sailors managed 
to pick up this theory remains a mystery, although some suggest that it 
was altered from some of the mathematical writings of Fibonacci.

Th e marteloio is not celestial navigation; there is nothing celestial 
about it. It was part of a group of methods known today as “dead” (short 
for “deduced”) reckoning, which use information about the ship’s speed, 
direction, and time of travel to update from a previously known posi-
tion to the current one. Oft en dead reckoning was not nearly accurate 
enough. During the Age of Exploration, an error of several miles easily 
could be the diff erence between a successful passage and death, either 
by sailing past an island containing needed provisions, or by contending 
with dangerous rocks off  shore.
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152 • Chapter 9

Finding one’s terrestrial latitude at sea is relatively easy: measure the 
altitude of the North Star above the horizon. (A more advanced and 
more precise technique, which uses the altitude of the Sun at noon, will 
be explored in the exercises.) On the other hand, the problem of deter-
mining longitude was studied already in the 16th century and would not 
be resolved for hundreds of years. Since longitude is measured with re-
spect to a position chosen arbitrarily on the Earth’s surface (Greenwich, 
England for us), any method must refer somehow to that place. Until 
the 18th century there was no known way to make this reference while 
at sea. A common navigational workaround was “parallel sailing”: since 
one’s latitude may be found via the North Star, the ship could sail along 
a parallel of latitude and be reasonably certain to reach the shore close 
to some target location.

But parallel sailing is ineffi  cient, and where trade routes and marine 
power are concerned, effi  ciency is the key to success. So the problem of 
longitude remained vital to western European nations’ prosperity and 

Figure 9.1. Th e Flying Cloud (1851–1874), which set the record for sailing from New 
York to San Francisco around Cape Horn in less than 90 days. Th e record stood until 
1989. Drawing by Ariel Van Brummelen, based on a painting by Efren Erese.
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Navigating by the Stars • 153

security. Several astronomical approaches were attempted, especially 
using distances measured from the center of the Moon to the Sun, a 
planet, or some reference star. Th e navigator could look up these dis-
tances in the Nautical Almanac (fi rst published in 1767) as they would be 
seen by an observer at Greenwich, and thereby determine the time of day 
at Greenwich. Comparing this result with his local time gave the longi-
tude, simply by multiplying the diff erence by / r360 24 15hc = . Navigators 
were lucky to have the Moon for this purpose; it was the only celestial 
object that moved fast enough to achieve the accuracy that was required.

However, the only person who can be said (in a sense) to have won 
the Longitude Prize—off ered by the British government in 1714 for the 
fi rst practical solution—was not a scientist, but a clockmaker. Between 
1730 and 1759 John Harrison constructed a series of four chronometers 
capable of keeping astonishingly accurate time, even on a ship tossed 
by waves. Set the clock to the correct time at Greenwich; when at sea, 
simply use the diff erence between local time and Greenwich time to fi nd 
the longitude. Th e story of Harrison’s tribulations fi rst in building the 
instruments, and then in convincing the government of his success (he 
was eventually awarded half of the money in 1765 but never offi  cially 
won the prize), is so dramatic that it has been turned into a popular 
book and an A&E miniseries.

As successful as Harrison’s timepieces were, those made by his com-
petitors were not as reliable as his own inventions; and the best chronom-
eters took months or even years to produce. Th rough the fi rst half of the 
19th century navigators usually preferred the lunar distances method. 
However, its use of involved mathematics taxed seamen’s abilities, and 
nautical academies were called upon to train them in the delicate op-
erations required to make the method work. Up to the fi rst half of the 
20th century, numerical tables were designed more and more cleverly to 
remove as much as possible the mathematical burden.

Preparing to Navigate: Th e Observations

We conclude our voyage through spherical trigonometry by exploring 
one of the most common techniques of determining one’s position at 
sea, the Method of Saint Hilaire (also known as the intercept, cosine- 
haversine, or Davis’s method), which revolutionized navigation in the 
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154 • Chapter 9

late 19th century. To prepare, we must fi rst take some observations to 
give us the data we need. We measure the altitude of two celestial objects 
above the horizon; oft en, but not always, one of them is the Sun. Th e 
observation usually must be made at dawn or dusk: during the day oft en 
only the Sun is visible; and at night the horizon is not visible—a bit of a 
hindrance when measuring altitude. Making suffi  ciently accurate obser-
vations on the pitching and rolling deck of a ship became possible in the 
17th and early 18th centuries with improvements to sextants and quad-
rants. It is best to make both observations at the same time and place. 
Otherwise, a more complicated “running fi x” procedure is required.

It is early in the evening of June 22, 2010, and we are sailing our ship 
eastward to the west coast of North America (fi gure 9.2). By dead reck-
oning we have a rough idea of our current position, known today as the 
assumed position or AP. In our case it is 47 30cφ= l N, 126 45cλ= l W. We 
have encountered strong winds and may be dozens of miles away from 
there, but for the upcoming method to work our estimate needs to be 
accurate only to within about 50 nautical miles. If our AP is correct, we 
must travel about 100 nautical miles roughly northeast to enter the Juan 
de Fuca Strait between Washington state and Vancouver Island. But an 
error in our AP might cause us to miss the Strait’s entrance altogether, 
so our navigational skills are required.

Figure 9.2. Our ship’s assumed position. Copyright 2012 TerraMetrics, Inc. 
www.terrametrics.com. © 2012 Google.
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Navigating by the Stars • 155

Th e sun has just set, and Venus is a bright evening star trailing the 
Sun in the western sky. Meanwhile, just west of south, Spica is shining 
brightly. So their azimuths (the direction of the object along the horizon 
measured from the north point; see fi gure 9.3) diff er by about 90c. We 
shall see later that this is a great advantage. We check our chronometer 
set to Greenwich Mean Time; conveniently, it reads exactly 5:00 AM 
on June 23, 2010. Using our handy sextant, we measure the altitudes 
of our two celestial bodies; for Venus we get 16 25.1hO c= l and for Spica 

.h 128 14O c= l. We are a bit fortunate with Venus, because atmospheric 
refraction makes it hard to measure accurately when the object’s altitude 
is less than 15c. Under good conditions an experienced sextant operator 
can measure the altitude to within 0.1 minutes of arc, so we may trust 
our observations to the given precision.

Now, since we are very unlikely to be exactly at the AP, our values for 
hO will not quite match the altitudes at the AP; it is these diff erences that 
will allow us to fi x the ship’s position. So our next task is to compute the 
altitudes hC of Venus and Spica at the AP, as well as their azimuths Z. In 
theory it is possible to observe Z directly. But in practice this can’t be 
done accurately enough: there is no visible surface feature from which 
to measure either at the north point of the horizon or below the star on 
the horizon. Z is also an angle on the surface of the celestial sphere at 
the zenith, but navigational instruments measure only arcs, not angles 
of triangles. So we have no choice but to compute Z.

As navigators not interested in trigonometry for its own sake, we 
could calculate hC and Z using nautical tables designed for this purpose. 
But as mathematicians, we would like to know what is going on. We 
appeal to the astronomical triangle, defi ned by connecting our star, the 
North Pole P, and the zenith Z (fi gure 9.4). Th e sides of this fundamen-
tal triangle are all familiar quantities: the complement of our known 

North

azimuth al
tit

ud
e

horizon

Figure 9.3. Th e altitude and azimuth of a star.
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156 • Chapter 9

latitude ϕr , the complement of the star’s known declination δr, and the 
complement of the star’s sought altitude hc

r . Two of the angles are useful 
as well: Z is equal to the star’s azimuth, which becomes clear if we extend 
both of the sides departing from Z down to the horizon; and the angle 
at P is the star’s local hour angle t. (Th e third angle, called the parallactic 
angle, will not concern us here.)

We may fi nd the hour angle with the help of the Nautical Almanac, 
which gives us the information needed to construct an hour angle dia-
gram. For Venus (as well as the Sun, Moon, and other planets), con-
sider fi gure 9.5. Place point M at the top of the circle, representing the 
local meridian, and draw a radius connecting M to the center. Next 
place Greenwich G on our diagram; since our assumed longitude is 

126 45cλ= l W, Greenwich’s meridian is 126 45c l east of ours. We turn 
next to the Nautical Almanac (see fi gure 9.6); it tells us that the Green-
wich hour angle GHA of Venus at our time is 212 58.2c l. (For an online 
equivalent to the Nautical Almanac, see appendix C.) So we place Venus 
212 58.2c l counter- clockwise from Greenwich. From the diagram, then, 
we see that the local hour angle is 212 58.2 126 45 86 13.2t c c c= − =l l l.

For Spica (or any star) the hour angle process involves an extra step. 
In fi gure 9.7, draw M and G as before. Th e Nautical Almanac tells us that 
the Greenwich hour angle GHA of the vernal equinox ,̂ the fi rst point 
of Aries, is 346 15.9c l; so we place ^ 346 15.9c l counter- clockwise from 
G. Finally, we must position the star itself on the diagram. Th e Nautical 
Almanac gives Spica’s displacement from ̂ , its sidereal hour angle SHA, 

Figure 9.4. Th e astronomical triangle.
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Navigating by the Stars • 157

as 158 33.4c l. So, measured westward from M, Spica’s local hour angle t is 
. . .126 45 346 15 9 158 33 4 360 18 04 3c c c c c− + + − =l l l l.

A Digression: Th e Haversine

Now that we know three quantities in our astronomical triangle (δr, ϕr , 
and t), solving for hC should be a direct application of the Law of Cosines,

 cos cos cos sin sin cosh tδ ϕ δ ϕ= +r r r r r .

But at sea in the early 20th century, prior to the advent of the pocket 
calculator, the navigator had to rely on numerical tables and hand cal-
culation. We have seen before that logarithms were extremely useful 
here—they could convert the multiplication of messy trigonometric 
values to the much simpler task of adding them. Unfortunately, the Law 
of Cosines does not lend itself to logarithms. Since there is no formula 
for the logarithm of the sum of two quantities, the logarithm of the right 
side of our equation does not simplify. In practice, oft en the astronomi-
cal triangle was divided into two right triangles so that Napier’s Rules 
could be applied in place of the Law of Cosines. Th ese so- called “short 
methods” played well with logarithms since the Napier formulas contain 

M

G

GHA Venus = 212° 58.2’

t =
 86

° 1
3.2’

λ = 126° 45’

Venus

Figure 9.5. Hour angle diagram for Venus off  the coast of Washington state, 5:00 a.m. 
GMT, June 23, 2010.
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158 • Chapter 9

Figure 9.6. A page from the Nautical Almanac, 2010. © British Crown copyright 
and/or database rights. Reproduced by permission of the Controller of Her Majesty’s 
Stationery Offi  ce and the UK Hydrographic Offi  ce (www.ukho.gov.uk).
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Navigating by the Stars • 159

no sums. Th e lack of logarithms wasn’t the only problem with the Law 
of Cosines. If hr happens to be small, then cos hr changes very slowly with 
respect to changes in hr. Th e implication is that computing backward 
from cos hr to hr causes small rounding errors in cos hr to be magnifi ed 
greatly when hr is found.

Necessity, the mother of invention, presses us into action. Historical 
navigators had more trigonometric functions available to them than we 
have today, and some of them have very nice properties. A few have an 
ancient pedigree. In addition to the sine, ancient Indian astronomers 
invented the “versed” (short for “reversed”) sine,

 1 cosvers θ θ= − .

Its Latin name, sagitta or “arrow,” comes from its geometric defi nition 
(fi gure 9.8): if the chord of an arc is the string of a bow, the sagitta is the 
tip of the arrow.

One might imagine that introducing this function might simplify the 
trigonometry only a little, since the versed sine is just 1 minus the cosine. 
However, a hidden advantage comes into play with the application of a 
well- known identity:

λ = 126° 45’

M

G

Spica

SHA     = 158° 33.4’

G
H

A 
   

 =
 3

46
° 1

5.9’

t = 18° 04.3’

Figure 9.7. Hour angle diagram for Spica off  the coast of Washington state on June 23, 
2010 at 5:00 a.m. GMT.
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160 • Chapter 9

 1 2cos sin 2vers 2θ θ θ= − = ;

or, altering the defi nition slightly by dividing by 2,

 cos sin1 2hav 2
1 2θ θ θ= − =^ h .

Th is half versed sine, or haversine, fi rst tabulated by James Andrew in 
1805, eventually became a favorite among seamen. A natural advantage 
of the haversine is that its values, the squares of sines, are always posi-
tive. Th is property means that a navigator never needs to worry whether 
the value of the haversine is positive or negative. Even better, since the 
haversine rises from 0 to 1 for arguments from 0c to 180c, the function 
is invertible in this range. So, taking the inverse of a haversine does not 
cause the same problems we saw in previous chapters when taking the 
inverse of a sine.

Another feature of the haversine recommends itself to scientists. 
Astronomers oft en work with very small arcs, for instance between 
two nearby stars. Imagine using the Law of Cosines on a small tri-
angle. A quantity something like cos(0.01c) might arise; its value is 
0.999999984769. If your calculator rounds to seven decimal places, it 
will record the cosine as 1. When the inverse cosine is taken, it will an-
nounce that the angular separation is zero! On the other hand, the ha-
versine of 0.01c is 7.615 10 9# − —a very small number, but not one where 
the rounding of signifi cant fi gures will cause a problem.

Figure 9.8. Th e versed sine.θ

1

cos θ vers θ

si
n 
θ
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Th e Method of Saint Hilaire

While we ventured briefl y into the world of haversines, we had left  our 
ship somewhere off  the coast of Washington state needing to compute 
the altitude hC of Venus and Spica. We shall follow the method of Saint 
Hilaire as it was updated and used in the 20th century. A career offi  cer 
in the French navy, Adolphe Laurent Anatole Marcq de Blond de Saint 
Hilaire was captain of the School Ship Renomée from 1873 to 1875 when 
he published the papers that led to his method. He would eventually rise 
to Rear Admiral, and he died in 1889 while serving as Commandant of 
Marines in Algeria. His method is inspired by the work of his predeces-
sor Th omas Sumner, which we shall explore in an extended exercise at 
the end of this chapter. Saint Hilaire’s “New Navigation” was developed 
in the decades following the appearance of his papers. It had become 
established, especially in France but soon everywhere else, by the early 
20th century. If one is to judge success by popularity, the New Naviga-
tion was the best of all methods; it was the standard procedure until new 
technologies gradually replaced all celestial methods of navigation in 
the second half of the 20th century.

We have enough information to fi nd hC, since we know three quan-
tities in the astronomical triangle: the local hour angle 86 13.2t c= l, 
 Venus’s declination 19 32.4cδ=+ l (from the Nautical Almanac), and at 
least a dead reckoning value for the local latitude, 47 30cφ=+ l. We could 
apply the Law of Cosines, but we shall make things easier for the naviga-
tor. With haversine tables in our possession, we can manipulate the Law 
of Cosines into a form amenable to their use.

→We start with

 cos cos cos sin sin cosh tC δ ϕ δ ϕ= +r r r r r .

Applying the formula 1 2cos havθ θ= −  to cos hC
r  and cos t, we get 

the ungainly

 1 2 2cos cos sin sin sin sinh thav havC δ ϕ δ ϕ δ ϕ− = + −r r r r r r r .

But ( ) ( )cos cos sin sin cos cosδ ϕ δ ϕ δ ϕ ϕ δ+ = − = −r r r r r r . If we replace 
this latter expression with its haversine equivalent and clean up a 
bit, we arrive at the haversine formula of navigation:

Van, B. G. (2012). Heavenly mathematics : The forgotten art of spherical trigonometry. Princeton University Press.
Created from gmu on 2023-08-31 20:37:12.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

rin
ce

to
n 

U
ni

ve
rs

ity
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



162 • Chapter 9

 ( ) cos cosh thav hav havC ϕ δ ϕ δ= − +r .→

In our case, the formula gives us 16 46.3hC c= l for Venus (compared to 
16 25.1hO c= l), and 29 06.9hC c= l for Spica (compared to 28 14.1hO c= l). 

Of course, the reader following along with one of those rare calcula-
tors lacking a haversine button may feel free to use the Law of Cosines 
instead.

Now that we know all three sides and one angle of our astronomical 
triangle, getting the azimuth Z is just a matter of applying the Law of 
Sines:

 sin
sin

sin
sin

t
h

Z
δ=

r r
.

Th e ambiguity that arises from needing to evaluate an arc sine is of 
no importance here; we have been looking at the star, and we know in 
what quadrant it lies. So for Venus, from sin Z = 0.98214 we deduce that 
Z = 79c09.3l west of North; and for Spica, from sin Z = 0.34829 we de-
duce that Z = 20c22.9l west of South.

Now that Z is known, we can imagine moving forward or backward 
in that direction on the water’s surface along the azimuth line (fi gure 
9.9). As we move, only Venus’s altitude (not its azimuth) will change; 
and if we move forward far enough, we will reach Venus—or rather, we 
will reach the place where Venus would land if it fell directly toward the 
Earth’s center. Th is point is called Venus’s geographical position, or GP. 
As we move along the azimuth line, Venus’s altitude will increase if we 
move toward Venus, or decrease if we walk away.

Assumed
position

Line of      position

Azim
uth lin

e

Intercept

Figure 9.9. Th e line of position.
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At some point in our journey back and forth along the azimuth line, 
Venus’s altitude will match our observed altitude 16 25.1hO c= l exactly. 
Th is point might be our true position. But we’re not quite sure of Z, and 
if we turn 90c to the left  or right and take a few steps, Venus will remain 
at the same altitude in the sky without changing Z much. In fact, we 
could take more than a few steps; we could travel in a giant circle cen-
tered at Venus’s GP, and Venus’s altitude would remain the same. (As 
huge as this circle is, it’s not a great circle, so it’s called a small circle.) Of 
course, we don’t expect to need to travel very far to adjust our position, 
so we will assume that our true position is somewhere on the straight 
line perpendicular to the place on the line of azimuth where Venus’s alti-
tude matches hO. We then draw the line of position, or LP, at right angles 
to the azimuth line, and we know that we are somewhere on that line. 
But how far from our AP should we travel to reach the LP?

Th e intercept, the distance from the AP to the LP, is where our method 
derives one of its names, and it is surprisingly easy to fi nd. Figure 9.10 
is the cross section of the universe through the center of the Earth that 
contains Venus. Since Venus is so far away, the lines of sight from both 

ho

ho

hc

AP

True
position

hc

 _
hc

 _
ho

Figure 9.10. Finding the intercept.
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our assumed and true positions are essentially parallel; it is the diff er-
ence in position on the Earth’s surface that causes hO to diff er from hC. 
Form a right triangle by drawing a tangent to the circle at the AP and 
joining it to the line of sight from the Earth’s center to Venus. Th e angles 
in this triangle will be 90c, hC, and hC

r . Do the same from the true posi-
tion. Th e angle at the center of the Earth between the assumed and true 
positions will be h h h hO C C O− = −r r . But this angle, measured in minutes 
of arc, is equal to the distance on the surface measured in nautical miles! 
So to calculate the intercept, we need only determine 60( )h hC O− . In 
Venus’s case the intercept is 21.2 nautical miles; for Spica it is 52.8 nauti-
cal miles.

We are now ready to use a plotting chart, a simple version of which is 
shown in fi gure 9.11. Our assumed position is at the center of the circle, 
so we may mark 126 45cλ= l W, 47 30cφ= l N on the chart as in fi gure 
9.12. Since the two vertical radii are marked off  in units of 60, it is con-
venient to assume that the circle has a radius of 60 nautical miles (if 
the intercepts had been smaller, we could have used a smaller scale). So 
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Figure 9.11. A simple blank nautical chart.
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we mark the top and bottom vertical lines 60 nautical miles above and 
below 47 30c l, at 4 308cφ= l and 4 306cφ= l. Th e longitude scale, however, 
is diff erent. From exercise 9 of chapter 2, recall that the east- west dis-
tance corresponding to one degree of longitude decreases as one moves 
north, according to the cosine of the latitude. We can work out this scale 
cleverly without a needing a calculator to compute the cosine: mark two 
places on the circle 47 30c l up and down from the rightmost point of the 
circle, and draw a vertical line. Do the same on the left . Th e three verti-
cal lines will each be 1c apart in longitude.

Earlier we calculated Venus’s azimuth to be 79 09.3c l west of North, 
so we draw the azimuth line onto our chart. Th e intercept is 21.2 nauti-
cal miles, so we must move that distance away from the center of the 
circle. But in which direction? In this case we must travel away from 
(rather than toward) Venus or disaster will ensue. As seen on fi gure 
9.10, if h h>C O then we must move away from Venus, and if h h<C O we 
must move toward it. Navigators remember this rule by memorizing 
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Figure 9.12. A nautical chart containing the fi x for our ship.
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the phrase “computed greater away.” Now that we have located Venus’s 
intercept (to the right of and a little below the center), we draw a per-
pendicular. Th is marks Venus’s line of position (LP), and we know that 
our ship is somewhere along it.

Of course, one LP isn’t enough to pin down our location, but we had 
the foresight to make two observations. So we leave the reader to repeat 
the process for Spica and get a second LP. Th e intersection of the two 
LP’s is our fi x, our best estimate of our true position. Occasionally navi-
gators make three observations and draw three LP’s. Since the three LP’s 
are unlikely to intersect at precisely the same point but instead form a 
small triangle, the navigator assumes that the ship is located at the most 
dangerous point within the triangle. Better safe than sorry.

Figure 9.12 shows our resulting fi x. We can now see why taking ob-
servations of two objects with azimuths diff ering by about 90c was such 
a good idea: our LP’s are almost at right angles to each other, produc-
ing a much more precise intersection point than if the LP’s had been 
nearly parallel. In our chart, we fi nd that our ship is actually around 55 
nautical miles northeast of the AP, at about 48 15cφ= l N, 126 00cλ= l W; 
this position is indicated in fi gure 9.13. We are much closer to Juan de 
Fuca Strait than we thought (less than 50 nautical miles rather than 100), 
and we need to approach the Strait heading almost due east, rather than 
northeast. It’s a good thing we have a navigator on board.

Figure 9.13. Th e assumed position of our ship, and the true position northeast of it. 
Copyright 2012 TerraMetrics, Inc. www.terrametrics.com. © 2012 Google.
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Now the secret may be revealed. Th e true position in this example, 
from which the altitude observations were obtained using astronomical 
soft ware, is exactly 48 15cφ= l N, 126 00cλ= l W. Th e true position is so 
close to our fi x that the thickness of the lines at the intersection of the 
two LP’s covers both locations. We have pinpointed our ship to a dis-
tance of less than 1000 feet.

Exercises

 1.  Finding one’s terrestrial latitude is as easy as measuring the altitude of 
the North Star, but sailors oft en used a more accurate method called 
the “noon sight.” Near local noon in the northern hemisphere, the Sun 
crosses the meridian (the great circle through the north and south points 
of the horizon and the zenith) in the south, reaching its maximum 
altitude. For a number of minutes around noon its altitude is almost 
constant. Th e sailor repeatedly measures the Sun’s altitude near noon, and 
considers the noon sight to be the largest measured value.
(a) Use the concepts from chapter 2 to explain how this measurement 
determines the local latitude. One quantity from the Nautical Almanac is 
needed; which one?
(b) On June 23, 2011, a sailor gets a noon solar altitude of 60 25.1c l. What 
is the local latitude? (Use the Nautical Almanac, paper or online, to get 
the quantity you need.)

 2.  Make an hour angle diagram for Mars and Altair using your local lon-
gitude, for June 22, 2010 at 0900 GMT. Use the page from the Nautical 
Almanac reproduced in fi gure 9.6.

 3.  (a) Since the haversine formula is an alternate formulation of the Law of 
Cosines, it clearly applies to any triangle, not just the astronomical one. 
Express the formula in terms of a general triangle with sides a, b, c and 
angles A, B, C.
(b) Solve 52a c= , 39b c= , 44c c=  using the haversine formula.

 4.  (a) Show that ( ) ( )sin sina b a b a bhav hav= + − − . (Hint: Use the cosine 
addition and subtraction formulas.)
(b) Substitute this result into the equation you generated in question 3(a), 
to obtain the following formula that involves only haversines:

 ( ) [ ( ) ( )]c a b a b a b Chav hav hav hav hav= − + + − − .

  [Nielsen/Vanlonkhuyzen 1944, 119]
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168 • Chapter 9

 5.  Th e formula derived in the previous exercise may be used to build a 
device called the haversine nomogram, capable of solving some spherical 
triangles visually. Make a scale as in fi gure E- 9.5.1, where the position of 
each tick mark corresponds to the haversine of that angle. (Th e more tick 
marks you can make, the more accurate your result.) Align three of these 
scales in a rectangle opened at the top, as in fi gure E- 9.5.2. Imagine that 
the triangle has sides a 87c= , b 52c= , and c 106c= . Th en 35a b c− =  and 

139a b c+ = . Draw a diagonal line from 35c on the left  scale to 139c on the 
right scale. Th en draw a horizontal line from the 106c point on the right 
scale and move down to the bottom scale when you reach the diagonal 
line. Th e angle at that place, 115c, is the value of C.
(a) Solve the triangle of question 3(b) using a haversine nomogram.
(b) Explain why this method produces the correct answer. (Hint: use the 
formula of question 4(b), solved for hav C.)
(c) Devise a method to use a haversine nomogram to fi nd the third side 
if two sides and their included angle are given. [Nielsen/Vanlonkhuyzen 
1944, 120–121]

0º 30º 60º 90º 120º 150º 180º

0.067 0.250 0.500 0.750 0.933 1.0000

0º 30º 60º 90º 120º 150º 180º
0º

30º

60º

90º

120º

150º
180º

Figure E-9.5.2. Finding an angle in a triangle with three known sides using a haversine 
nomogram.

Figure E-9.5.1. Th e haversine nomogram.
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 6.  It is early evening on June 22, 2010 and you are somewhere southeast of 
the coast of Long Island, NY, hoping to sail toward Rhode Island. Your 
chronometer reads June 23, 2010, 1:00 AM GMT, and your assumed 
position is 40 05cφ= l, 70 33cλ= l. A little west of south you spot Antares, 
and with your sextant you measure it to be 16 34.0c l above the horizon. 
Just north of west is Venus, with an altitude of 18 40.1c l. Use Saint Hilaire’s 
method to determine your position. (Figure 9.6 contains the appropriate 
page from the Nautical Almanac. Th e solution is 40 52cφ= l, 71 14cλ= l.)

 7.  Make up your own navigation problem. Do this with astronomical soft -
ware as follows: choose true and assumed positions with values of ϕ and λ 
less than one degree apart. In your soft ware, set your location to the true 
position, fi nd a time near sunrise or sunset when two objects are visible 
with azimuths separated by around 90c, record their altitudes, and note 
the time in GMT. Now discard the true position, and proceed with Saint 
Hilaire’s method. You may use the online Nautical Almanac if necessary. 
When you are fi nished, compare your fi x with the true position.

 8.  Perform the Saint Hilaire calculations in this chapter, but use the Law of 
Cosines directly on the astronomical triangle rather than the haversine 
formula. Round all trigonometric quantities to three decimal places for 
both methods. Assuming that you have a haversine button on your calcu-
lator, which method is faster? Does one give a more accurate result than 
the other?

 9.  (Assumes calculus) Find the derivative of the Sun’s altitude with respect 
to local hour angle. Explain from the result why solar observations taken 
when the Sun is in the East or West were preferred to when the Sun is in 
the South (near noon). [courtesy of Joel Silverberg]

 10.  Sumner’s method: In the late morning of December 17, 1837 Th omas 
Hubbard Sumner was approaching St. George’s Channel between Ireland 
and Wales on his way to Scotland, having departed three weeks earlier 
from South Carolina. Unsure of his position since his last fi x 600 miles 
back and dealing with bad weather conditions, he was fearful of encoun-
tering the dangerous rocks on the southeast tip of Ireland. Th e critical 
checkpoint that Sumner needed to locate was Small’s Light just off  the 
coast of Wales; if he could sail toward it, he would be able to fi nd safe 
passage through the channel (fi gure E- 9.10). Suddenly the clouds parted 
momentarily and gave him a brief opportunity to measure the Sun’s 
altitude. Spurred by necessity, he had a fl ash of insight that led to his new 
method of navigation, and eventually inspired Saint Hilaire’s method as 
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170 • Chapter 9

well. In this exercise we shall reproduce his discovery as he described it 
in 1843.
(a) Sumner’s fundamental formula on the astronomical triangle is equiva-
lent to the Law of Cosines, but it is in a form that makes logarithmic 
calculation easier:

 1 { ( ) }cos cos sin sec sect t hvers φ δ φ δ= − = − − .

Explain why this formula is easier to use with logarithms, and derive it 
from the Law of Cosines.
(b) By dead reckoning Sumner believed his latitude to be somewhere 
around 51 37cφ= l N. Decrease this to 51c. From the Almanac we know 
the Sun’s declination to be 23 23cδ=− l. At the moment when the clouds 
parted, Sumner observed the Sun’s altitude to be 12 10h c= l. Use this data 
and the formula in (a) to determine the hour angle t. You do not need to 
use logarithms.
(c) In time units, you should have found that t 1 43 59h m s= , which repre-
sents the time before local noon. However, Sumner needed to account for 
the equation of time, a small eff ect that accounts for the fact that the Sun 
does not quite travel through the celestial sphere at a constant speed. On 
the date of Sumner’s observation the equation of time was 3 37m s, which 
implied that the apparent time had to be adjusted 3 37m s earlier. Sumner’s 
chronometer told him that the time was 10:47:13 AM in Greenwich. 

Figure E-9.10. Sumner’s Method.
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What is the diff erence between local time and Greenwich time? Multiply 
by 15 to get the ship’s longitude. Plot the resulting ship’s position on the 
map and call it point A.
(d) Th e above calculations are based on a latitude of 51c, which is 37l less 
than Sumner’s best estimate. Repeat the calculations of (b) and (c), this 
time for a latitude of 52c. Plot the new position as point B.
(e) Draw a line through A and B. Drawn correctly, the line should pass 
through or very close to Small’s Light. Since the Sun’s altitude is the same 
at both A and B, it will also be the same at every point on the line joining 
A and B. (To be precise, A and B both lie on the line of position, a very 
large—but not great—circle containing all the points on the Earth’s sur-
face where the Sun’s altitude is 12c10l.) In what direction is the azimuth of 
the Sun with respect to this line?

    Sumner reasoned correctly that whatever his true latitude was, he 
had to be somewhere on the line of position. Since (luckily) the line 
passes through Small’s Light, Sumner simply sailed in the direction of 
his line. He soon encountered Small’s Light, passed safely through St. 
George’s Channel, and changed the history of navigation. [thanks to Joel 
Silverberg]

Where to Go from Here

Our tour through the world of spherical trigonometry has ended, but 
there are countless journeys that may be taken from here. Todhunter 
and Leathem’s 1907 textbook and Casey’s 1889 treatise are particularly 
rich sources for further exploration of mathematical topics:

• the properties of small circles (not necessarily small in stature, 
but not great circles) on their own, or inscribed in and circumscribed 
around spherical triangles;

• a duality between theorems on small circles and on great circles;

• Hart’s Circle, a spherical analog to the nine point circle in plane 
geometry;

• approximate formulas and the use of calculus to determine varia-
tions in quantities when certain other quantities are varied (useful in 
geodesy and other practical applications).
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Also in the nineteenth century, spherical trigonometry became sub-
sumed into a more general trigonometry that included non-Euclidean 
spaces. Although this did not aff ect the classroom and we have chosen to 
skip over it here, the interested reader will fi nd the theory both power ful 
and fascinating. Seth Braver’s Lobachevski Illuminated is an extensively 
annotated translation of one of the earliest works in this area.

Th e reader may wish to explore extensions of spherical trigonometry 
in astronomy and navigation; in the literature of those subjects you will 
fi nd many variants to the procedures shown here and even entirely new 
approaches. In astronomy, consider W. M. Smart’s Textbook on Spherical 
Astronomy or Simon Newcomb’s Compendium of Spherical Astronomy; 
in navigation, consult Charles Cotter’s History of Nautical Astronomy. If 
you care to linger a while in these dusty old textbooks, you will fi nd that 
the playground of spherical trigonometry contains many more forgot-
ten delights.
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