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Navigating by the Stars

B. M. Brown’s complaint in the previous chapter against Cesaros re-
markable approach to spherical trigonometry might have been made by
an astronomer or navigator. For the practitioner already in command
of the important theorems and looking ahead to their uses in science,
a pit stop to examine elegant alternative approaches is a restless, impa-
tient exercise. While we may value the charm of beautiful mathematics
on its own, its charm can only be enhanced by witnessing what it can
do in some physical realization. Thus, it seems appropriate to conclude
this book with an account of the life-and-death application that gave the
subject much of its vitality in the past couple of centuries: finding one’s
position on the Earth while in a ship at sea (figure 9.1).

As far as we know, trigonometry was first used for navigation by Ve-
netian merchant ships in the 14th century. Plying their trade through
the Mediterranean and as far away as the Black Sea, Venetians used their
shipping routes to establish themselves as a dominant economic power.
Navigators” personal notebooks, of which several survive, recorded sev-
eral navigational techniques. One of these—the table of marteloio—was
essentially an application of plane trigonometry. How sailors managed
to pick up this theory remains a mystery, although some suggest that it
was altered from some of the mathematical writings of Fibonacci.

The marteloio is not celestial navigation; there is nothing celestial
about it. It was part of a group of methods known today as “dead” (short
for “deduced”) reckoning, which use information about the ship’s speed,
direction, and time of travel to update from a previously known posi-
tion to the current one. Often dead reckoning was not nearly accurate
enough. During the Age of Exploration, an error of several miles easily
could be the difference between a successful passage and death, either
by sailing past an island containing needed provisions, or by contending
with dangerous rocks oft shore.
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Figure 9.1. The Flying Cloud (1851-1874), which set the record for sailing from New
York to San Francisco around Cape Horn in less than 90 days. The record stood until
1989. Drawing by Ariel Van Brummelen, based on a painting by Efren Erese.

Finding one’s terrestrial latitude at sea is relatively easy: measure the
altitude of the North Star above the horizon. (A more advanced and
more precise technique, which uses the altitude of the Sun at noon, will
be explored in the exercises.) On the other hand, the problem of deter-
mining longitude was studied already in the 16th century and would not
be resolved for hundreds of years. Since longitude is measured with re-
spect to a position chosen arbitrarily on the Earth’s surface (Greenwich,
England for us), any method must refer somehow to that place. Until
the 18th century there was no known way to make this reference while
at sea. A common navigational workaround was “parallel sailing”: since
one’s latitude may be found via the North Star, the ship could sail along
a parallel of latitude and be reasonably certain to reach the shore close
to some target location.

But parallel sailing is inefficient, and where trade routes and marine
power are concerned, efficiency is the key to success. So the problem of
longitude remained vital to western European nations” prosperity and
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security. Several astronomical approaches were attempted, especially
using distances measured from the center of the Moon to the Sun, a
planet, or some reference star. The navigator could look up these dis-
tances in the Nautical Almanac (first published in 1767) as they would be
seen by an observer at Greenwich, and thereby determine the time of day
at Greenwich. Comparing this result with his local time gave the longi-
tude, simply by multiplying the difference by 360°/24"r = 15. Navigators
were lucky to have the Moon for this purpose; it was the only celestial
object that moved fast enough to achieve the accuracy that was required.

However, the only person who can be said (in a sense) to have won
the Longitude Prize—offered by the British government in 1714 for the
first practical solution—was not a scientist, but a clockmaker. Between
1730 and 1759 John Harrison constructed a series of four chronometers
capable of keeping astonishingly accurate time, even on a ship tossed
by waves. Set the clock to the correct time at Greenwich; when at sea,
simply use the difference between local time and Greenwich time to find
the longitude. The story of Harrison’s tribulations first in building the
instruments, and then in convincing the government of his success (he
was eventually awarded half of the money in 1765 but never officially
won the prize), is so dramatic that it has been turned into a popular
book and an A&E miniseries.

As successful as Harrison’s timepieces were, those made by his com-
petitors were not as reliable as his own inventions; and the best chronom-
eters took months or even years to produce. Through the first half of the
19th century navigators usually preferred the lunar distances method.
However, its use of involved mathematics taxed seamen’s abilities, and
nautical academies were called upon to train them in the delicate op-
erations required to make the method work. Up to the first half of the
20th century, numerical tables were designed more and more cleverly to
remove as much as possible the mathematical burden.

Preparing to Navigate: The Observations

We conclude our voyage through spherical trigonometry by exploring
one of the most common techniques of determining one’s position at
sea, the Method of Saint Hilaire (also known as the intercept, cosine-
haversine, or Davis’s method), which revolutionized navigation in the
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late 19th century. To prepare, we must first take some observations to
give us the data we need. We measure the altitude of two celestial objects
above the horizon; often, but not always, one of them is the Sun. The
observation usually must be made at dawn or dusk: during the day often
only the Sun is visible; and at night the horizon is not visible—a bit of a
hindrance when measuring altitude. Making sufficiently accurate obser-
vations on the pitching and rolling deck of a ship became possible in the
17th and early 18th centuries with improvements to sextants and quad-
rants. It is best to make both observations at the same time and place.
Otherwise, a more complicated “running fix” procedure is required.

It is early in the evening of June 22, 2010, and we are sailing our ship
eastward to the west coast of North America (figure 9.2). By dead reck-
oning we have a rough idea of our current position, known today as the
assumed position or AP. In our case it is ¢ =47°30'N, 1 =126°45"W. We
have encountered strong winds and may be dozens of miles away from
there, but for the upcoming method to work our estimate needs to be
accurate only to within about 50 nautical miles. If our AP is correct, we
must travel about 100 nautical miles roughly northeast to enter the Juan
de Fuca Strait between Washington state and Vancouver Island. But an
error in our AP might cause us to miss the Strait’s entrance altogether,
so our navigational skills are required.

Figure 9.2. Our ship’s assumed position. Copyright 2012 TerraMetrics, Inc.
www.terrametrics.com. © 2012 Google.
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Figure 9.3. The altitude and azimuth of a star.
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The sun has just set, and Venus is a bright evening star trailing the
Sun in the western sky. Meanwhile, just west of south, Spica is shining
brightly. So their azimuths (the direction of the object along the horizon
measured from the north point; see figure 9.3) differ by about 90°. We
shall see later that this is a great advantage. We check our chronometer
set to Greenwich Mean Time; conveniently, it reads exactly 5:00 AM
on June 23, 2010. Using our handy sextant, we measure the altitudes
of our two celestial bodies; for Venus we get h, =16°25.1" and for Spica
h,=28°14.1. We are a bit fortunate with Venus, because atmospheric
refraction makes it hard to measure accurately when the object’s altitude
is less than 15°. Under good conditions an experienced sextant operator
can measure the altitude to within 0.1 minutes of arc, so we may trust
our observations to the given precision.

Now, since we are very unlikely to be exactly at the AP, our values for
h,, will not quite match the altitudes at the AP; it is these differences that
will allow us to fix the ship’s position. So our next task is to compute the
altitudes h. of Venus and Spica at the AP, as well as their azimuths Z. In
theory it is possible to observe Z directly. But in practice this can’t be
done accurately enough: there is no visible surface feature from which
to measure either at the north point of the horizon or below the star on
the horizon. Z is also an angle on the surface of the celestial sphere at
the zenith, but navigational instruments measure only arcs, not angles
of triangles. So we have no choice but to compute Z.

As navigators not interested in trigonometry for its own sake, we
could calculate h. and Z using nautical tables designed for this purpose.
But as mathematicians, we would like to know what is going on. We
appeal to the astronomical triangle, defined by connecting our star, the
North Pole P, and the zenith Z (figure 9.4). The sides of this fundamen-
tal triangle are all familiar quantities: the complement of our known
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Figure 9.4. The astronomical triangle.

! equato”

horizon

latitude @, the complement of the star’s known declination 0, and the
complement of the star’s sought altitude 4. Two of the angles are useful
as well: Z is equal to the star’s azimuth, which becomes clear if we extend
both of the sides departing from Z down to the horizon; and the angle
at P is the star’s local hour angle t. (The third angle, called the parallactic
angle, will not concern us here.)

We may find the hour angle with the help of the Nautical Almanac,
which gives us the information needed to construct an hour angle dia-
gram. For Venus (as well as the Sun, Moon, and other planets), con-
sider figure 9.5. Place point M at the top of the circle, representing the
local meridian, and draw a radius connecting M to the center. Next
place Greenwich G on our diagram; since our assumed longitude is
A =126°45"W, Greenwich’s meridian is 126°45 east of ours. We turn
next to the Nautical Almanac (see figure 9.6); it tells us that the Green-
wich hour angle GHA of Venus at our time is 212°58.2". (For an online
equivalent to the Nautical Almanac, see appendix C.) So we place Venus
212°58.2" counter-clockwise from Greenwich. From the diagram, then,
we see that the local hour angle is t =212°58.2' —126°45' = 86"13.2".

For Spica (or any star) the hour angle process involves an extra step.
In figure 9.7, draw M and G as before. The Nautical Almanac tells us that
the Greenwich hour angle GHA of the vernal equinox Y’ the first point
of Aries, is 346°15.9'; so we place Y 346°15.9" counter-clockwise from
G. Finally, we must position the star itself on the diagram. The Nautical
Almanac gives Spica’s displacement from Y, its sidereal hour angle SHA,
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Venus

Figure 9.5. Hour angle diagram for Venus off the coast of Washington state, 5:00 a.m.
GMT, June 23, 2010.

as158°33.4". So, measured westward from M, Spica’s local hour angle ¢ is
—126°45"+346°15.9' +158°33.4'—360°=18°04.3".

A Digression: The Haversine

Now that we know three quantities in our astronomical triangle (5, P,
and t), solving for k. should be a direct application of the Law of Cosines,

cos h = cosd cosp + sind sing cost.

But at sea in the early 20th century, prior to the advent of the pocket
calculator, the navigator had to rely on numerical tables and hand cal-
culation. We have seen before that logarithms were extremely useful
here—they could convert the multiplication of messy trigonometric
values to the much simpler task of adding them. Unfortunately, the Law
of Cosines does not lend itself to logarithms. Since there is no formula
for the logarithm of the sum of two quantities, the logarithm of the right
side of our equation does not simplify. In practice, often the astronomi-
cal triangle was divided into two right triangles so that Napier’s Rules
could be applied in place of the Law of Cosines. These so-called “short
methods” played well with logarithms since the Napier formulas contain

Van, B. G. (2012). Heavenly mathematics : The forgotten art of spherical trigonometry. Princeton University Press.
Created from gmu on 2023-08-31 20:37:12.



158

CHAPTER 9

124 2010 JUNE 21, 22, 23 (MON., TUES., WED.)
UT | ARIES | VENUS —4.0| MARS +1.3 |JUPITER —2.4 | SATURN +1.1 STARS
GHA GHA Dec GHA Dec GHA Dec GHA Dec Name SHA Dec
d h a e ! o ¥ e n I R LI o e T o 1
2100{ 269 05.3 | 138 24.5 N20 14.7 | 109 37.7 N 9 47.5 | 267 00.1 S 0 26.6 | 89 47.4 N 2 52.2 |Acamar 315 20.2 540 155
01 284 07.7 | 153 24.0 13.9 | 124 38.9 47.0 | 262 02.3 26.5 | 104 49.8 52.2 |Achernar 335 28.5 557 10.7
02| 299 10.2 | 168 23.4 13.1 | 139 40.1 46.4 | 297 04.6 26.4 | 119 52.2 52.1 | Acrux 173 11.8 S63 09.8
03314 12.6 | 183 22.9 . . 12.3 154 413 . . 459|312 068 . . 263|134 566 . . 521 |Adhara 255 14.6 528 59.3
04] 329 15.1 | 198 22.4 115 | 169 42.5 45.3 | 327 09.0 26.2 | 149 56.9 52.0 |Aldebaran 290 52.2 N1é 31.8
05] 344 17.6 | 213 21.9 10.8 | 184 43.7 44.8 | 342 113 26.1 | 164 59.3 52.0
06| 359 20.0 | 228 21.4 N20 10.0 | 199 448 N 9 44.2 | 357 13.5 5 0 26.1 | 180 OL7 N 2 51.9 |Alioth 166 22.3 NS5 54.3
07| 14 22.5 | 243 209 09.2 | 214 46.0 437 | 12 157 26.0 | 195 04.1 51.9 | Alkaid 153 00.3 N49 15.8
08| 29 25.0 | 258 20.4 08.4 | 229 47.2 431 27 18.0 25.9 | 210 06.5 51.8 | Al Na'ir 27 461 546 543
M 09| 44 27.4 (273 199 . . O7.6 | 244 48.4 . . 426 | 42 20.2 . . 258|225 08.9 . . 518 |Alnilam 275 489 5 1 117
O 10| 59 29.9 | 288 19.4 06.9 | 259 49.6 42.0 | 57 22.4 25.7 | 240 11.2 518 |Alphard 217 58.4 S 8 42.4
N 11| 74 324 | 303 189 06.1 | 274 50.8 415 | 72 247 25.6 | 255 13.6 517
D 12| 89 348|318 18.4 N20 053 | 289 52.0 N 9 409 | B7 269 § 0 25.5 | 270 16.0 N 2 517 126 12.5 N26 40.8
A 13| 104 37.3 | 333 17.8 04.5 | 304 53.1 404 | 102 29.1 25.4 | 285 18.4 516 |Alpheratz 357 45.8 N29 08.8
y 14| 119 39.8 | 348 17.3 03.7 | 319 54.3 39.8 | 117 314 25.4 | 300 20.8 51.6 | Altalr 62 10.0 N 8 538
15/134 422 | 3 168 . . 029|334 555 . . 393|132 336 253|315 23.2 . . 515 |Ankaa 353 17.8 542 14.6
16| 149 447 | 18 163 02.1 | 349 56.7 38.7 | 147 35.8 25.2 | 330 256 515 | Antares 112 28.6 526 27.4
17| 164 471 33 158 oL3| 4579 38.2 | 162 38.1 25.1 | 345 27.9 514
18| 179 49.6 | 48 15.3 N20 00.6 | 19 59.1 N 9 37.6 0303 N 2 51.4 |Arcturus 145 57.5 N19 07.7
19| 194 52.1 | 3 14.8 19 59.8 | 35 00.3 371 15 32.7 51.4 | Atria 107 31.9 569 02.9
20{ 209 54.5 | 78 14.3 .0 | 50 01.4 6.5 30 35.1 51.3 | Avior 234 19.5 559 32.8
21224 57.0 | 93 138 .. 582 | 65026 .. 360 45 37.5 . . 513 |Bellatix 278 347 N 6 215
22| 239 59.5 | 108 13.3 57.4 | B0 03.8 35.4 b0 39.8 51.2 |Betelgeuse 271 04.0 N 7 24.5
23| 255 019 | 123 12.8 56.6 | 95 05.0 349 75 42.2 51.2
2200] 270 04.4 | 138 12.3 N19 558 | 110 06.2 N 9 34.3 90 44.6 N 2 51,1 |Canopus 263 57.7 552 421
01| 285 06.9 | 153 11.6 55.0 | 125 07.4 33.8 | 282 56.0 24.4 | 105 47.0 51.1 | Capeila 280 38.1 N4b 00.5
02| 300 09.3 | 168 11.3 54.2 | 140 08.5 33.2 | 297 58.2 24.3 [ 120 49.4 51.0 | Deneb 49 32.6 N45 19,0
03] 315 11.8 | 183 10.8 . . 53.4 | 155 09.7 . . 327 [ 313 005 24.2 [ 135 518 . . 510 |Densbola 182 35.9 N14 30.8
04] 330 14.2 | 198 104 52.6 | 170 10.9 32.1 | 328 027 24.2 | 150 54.1 51.0 | Diphda 348 58,1 517 555
05| 345 16.7 | 213 09.9 518 | 185 12.1 315 | 343 049 24.1 | 165 56.5 50.9
06| ©019.2|228 09.4 N19 51.0 | 200 13.3 N 9 31.0 | 358 07.2 5 0 24.0 | 180 58.9 N 2 50.9 | Dubhe 193 54.3 N6l 418
07| 15 216 | 243 08.9 50.2 | 215 14.5 304 | 13 094 23.9 [ 196 013 50.8 | Elnath 278 157 N28 389
T 08| 30 24.1 | 258 08.4 49.4 | 230 15.6 299 | 28 117 23.8 | 211 03.7 50.8 | Eltanin 90 46.6 N51 29.3
U 09| 45266 273 079 . . 486 (245168 . . 293 | 43 139 23.7 | 226 06.1 50.7 | Enif 33 49.1 N 9 55.4
E 10| &0 29.0 | 288 07.4 47.8 | 260 18.0 288 | 58 161 23.7 | 241 08.4 50.7 |Fomalhaut 15 26.2 529 337
11| 75 31.5 | 303 06.9 47.0 | 275 19.2 282 | 73184 23.6 | 256 108 50.6
S 12| 90 34.0| 318 06.4 N19 46.2 | 290 204 N 9 27.7 | 88 20.6 5 0 235 | 271 132 N 2 50.6 | Gacrux 172 03.4 557 107
D 13} 105 36.4 | 333 059 454 | 305 216 27.1 | 103 229 23.4 | 286 15.6 50.5 | Gienah 175 54.5 517 362
A 14120 38.9 | 348 05.4 446 | 320 22.7 26.6 | 118 25.1 23.3 | 301 18.0 50.5 | Hadar 148 50.8 560 25.7
Y 15{135 414 3050 .. 438335239 .. 260|133 274 . . 23.2 | 316 203 50.4 | Hamal 328 03.4 N23 307
16| 150 43.8 | 18 04.5 429 | 350 25.1 25.5 | 148 29.6 23.2 | 331 227 50.4 |Kaus Aust. 83 46.3 534 227
17| 165 46.3 | 33 04.0 421| 5263 24.9 | 163 31.8 23.1 | 346 25.1 50.4
18| 180 48.7 | 48 03.5 N19 413 | 20 27.5 N 9 243|178 341 5 0 23.0| 1 27.5 N 2 50.3 | Kochab 137 18.9 N74 069
19(195 51.2 | 63 03.0 40.5| 35 28.7 23.8 | 193 363 229| 16 299 50.3 | Markab 13 40.4 N15 15.7
20| 210 53.7 | 78 02.5 397 | 50 298 23.2 | 208 38.6 228 | 31322 50.2 | Monkar 314 17.6 N 4 07.9
21| 225 56,1 | 93 020 . . 389| 65 31.0 . . 22.7 | 223 40.8 . . 227 | 46 348 50.2 |Menkent 148 10.0 536 255
22| 240 58.6 | 108 01.6 381 80 322 22.1 | 238 43.1 227 | 61 37.0 50.1 |Miaplacidus 221 41.0 569 459
23| 256 01.1 | 123 01.1 373 | 95 334 216 | 253 453 22.6 | 76 394 50.1
00 271 03.5 [ 138 00.6 N19 36.4 | 110 34.6 N 9 21.0 | 268 47.5 5 0 225 | 91 417 N 2 50.0 | Mirfak 308 43.9 N49 538
01 286 06.0 | 153 00.1 356 | 125 35.7 20.5 | 283 49.8 22.4 | 106 44.1 50.0 | Nunki 76 00.6 526 16.9
02| 301 08.5 | 167 59.6 34.8 | 140 369 19.9 | 298 52.0 22.3 | 121 46.5 49.9 | Peacock 53 22.0 556 418
03] 316 10.9 | 182 59.2 . . 34.0|155 381 . . 19.4 | 313 543 . . 22.2 | 136 489 49.9 | Pallux 243 30.7 N28 00.1
04] 331 13.4 | 197 58.7 332 | 170 393 18.8 | 328 56.5 22.2 | 151 513 49.8 |Procyon 245 023 N 5 118
05 346 15.9 | 212 58.2 32.4 | 185 405 18.2 | 343 58.8 22.1 | 166 53.6 49.8
06| 1183|227 57.7 N19 315|200 41.7 N 9 17.7 | 359 01.0 S 0 22.0 | 181 56.0 N 2 49.8 96 08.1 N12 332
w 07| 16 208 | 242 57.3 307 | 215 42.8 17.1| 14 033 21.9 | 196 58.4 49.7 |Rogulus 207 46.0 N11 54.9
g 08| 31 232|257 56.8 29.9 | 230 44.0 166 | 29 05.5 21.8 | 212 00.8 49.7 | Rigel 281 145 5 8 11.4
p 99| 46257272 563 . . 291|245 452 .. 160| 44 078 .. 218|227 03.2 .. 49.6 |RigiKent 139 54.4 S60 53.0
10| &1 28.2 | 2687 55.8 28.2 | 260 46.4 155 | 59 10.0 21.7 | 242 05.5 49.6 | Sabik 102 14.7 515 44.3
N 11{ 76 30, | 302 55.4 27.4 | 275 47.6 149 | 74 123 216 | 257 07.9 49.5
E 12| 91331317 54.9 19 266 | 290 487 N 9 14.3 | 89 145 5 0 21.5 | 272 10.3 N 2 49.5 | Sched 349 43.2 NS6 35.5
S 13| 106 356 | 332 544 25.8 | 305 49.9 138 | 104 168 21.4 | 287 12.7 49.4 | Shaula 96 24.4 $37 06.7
D 14]121 38.0 | 347 539 24.9 | 320 51.1 13.2 | 119 19.0 21.3 | 302 15.0 49.4 | Sirius 258 36.0 516 43.9
A 150136 40.5| 2535 .. 241335523 .. 127|134 212 . . 213|317 174 . . 493 |Spica 158 33.4 $11 13.1
Yy 16|151 43.0 | 17 53.0 23.3 | 350 53.5 121 | 149 235 21.2 | 332 19.8 49.3 | Suhail 222 54.4 543 28.7
17| 166 45.4 | 32 52.5 22.4| 5546 116 | 164 257 211 | 347 22.2 49.2
18181 47.9| 47 52.1 N19 216 | 20558 N 9110|179 28.0 5 0 21.0| 2 245 N 2 49.2 |Vega 80 40.0 N38 47.6
19] 196 50.4 | 62 516 20.8 | 35 57.0 10.4 | 194 302 209 | 17 269 49.1 |Zuben'ubl 137 07.6 16 08.2
20f211 528 | 77 511 19.9 | 50 s8.2 09.9 | 209 32.5 209 | 32 293 49.1 SHA  Mer.Pass. |
19.1| 65 59.4 . . 09.3 224 347 . . 20.8| 47 317 .. 49.0 % 5 T
183 | B1 00.5 08.8 | 239 37.0 20.7 | 62 340 49.0 |Venus 228 07.9 14 48
17.4 | 96 0L.7 08.2 | 254 39.2 206 | 77 364 48.9 |Mars 200 018 16 38
Jupiter 357 494 b 08
d 0.8 v 1.2 4 o0& v 22 d 01 v 24 d 00 |Satumn 180 40.2 17 54
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Figure 9.6. A page from the Nautical Almanac, 2010. © British Crown copyright
and/or database rights. Reproduced by permission of the Controller of Her Majesty’s
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Spica M

Figure 9.7. Hour angle diagram for Spica off the coast of Washington state on June 23,
2010 at 5:00 a.m. GMT.

no sums. The lack of logarithms wasn't the only problem with the Law
of Cosines. If i happens to be small, then cos & changes very slowly with
respect to changes in k. The implication is that computing backward
from cos & to h causes small rounding errors in cos h to be magnified
greatly when £ is found.

Necessity, the mother of invention, presses us into action. Historical
navigators had more trigonometric functions available to them than we
have today, and some of them have very nice properties. A few have an
ancient pedigree. In addition to the sine, ancient Indian astronomers
invented the “versed” (short for “reversed”) sine,

vers @ = 1 — cosf.

Its Latin name, sagitta or “arrow, comes from its geometric definition
(figure 9.8): if the chord of an arc is the string of a bow, the sagitta is the
tip of the arrow.

One might imagine that introducing this function might simplify the
trigonometry only a little, since the versed sine is just 1 minus the cosine.
However, a hidden advantage comes into play with the application of a
well-known identity:
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vers =1 — cosf = Zsinzg;

or, altering the definition slightly by dividing by 2,

hav 6 = }(1—cosf) = sin® g
This half versed sine, or haversine, first tabulated by James Andrew in
1805, eventually became a favorite among seamen. A natural advantage
of the haversine is that its values, the squares of sines, are always posi-
tive. This property means that a navigator never needs to worry whether
the value of the haversine is positive or negative. Even better, since the
haversine rises from 0 to 1 for arguments from 0° to 180°, the function
is invertible in this range. So, taking the inverse of a haversine does not
cause the same problems we saw in previous chapters when taking the
inverse of a sine.

Another feature of the haversine recommends itself to scientists.
Astronomers often work with very small arcs, for instance between
two nearby stars. Imagine using the Law of Cosines on a small tri-
angle. A quantity something like cos(0.01°) might arise; its value is
0.999999984769. If your calculator rounds to seven decimal places, it
will record the cosine as 1. When the inverse cosine is taken, it will an-
nounce that the angular separation is zero! On the other hand, the ha-
versine of 0.01° is 7.615 X 10 °—a very small number, but not one where
the rounding of significant figures will cause a problem.
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The Method of Saint Hilaire

While we ventured briefly into the world of haversines, we had left our
ship somewhere off the coast of Washington state needing to compute
the altitude A, of Venus and Spica. We shall follow the method of Saint
Hilaire as it was updated and used in the 20th century. A career officer
in the French navy, Adolphe Laurent Anatole Marcq de Blond de Saint
Hilaire was captain of the School Ship Renomée from 1873 to 1875 when
he published the papers that led to his method. He would eventually rise
to Rear Admiral, and he died in 1889 while serving as Commandant of
Marines in Algeria. His method is inspired by the work of his predeces-
sor Thomas Sumner, which we shall explore in an extended exercise at
the end of this chapter. Saint Hilaire’s “New Navigation” was developed
in the decades following the appearance of his papers. It had become
established, especially in France but soon everywhere else, by the early
20th century. If one is to judge success by popularity, the New Naviga-
tion was the best of all methods; it was the standard procedure until new
technologies gradually replaced all celestial methods of navigation in
the second half of the 20th century.

We have enough information to find h., since we know three quan-
tities in the astronomical triangle: the local hour angle + =86°13.2/,
Venus’s declination 6 =+19°32.4" (from the Nautical Almanac), and at
least a dead reckoning value for the local latitude, ¢ = +47°30". We could
apply the Law of Cosines, but we shall make things easier for the naviga-
tor. With haversine tables in our possession, we can manipulate the Law
of Cosines into a form amenable to their use.

—->We start with

cos flc = cosd cosp + sind sing cost.
Applying the formula cos =1—2 hav 6 to cos /. and cost, we get
the ungainly
1— 2 hav h. = cosd cosp + sindsing — 2sind sing hav ¢.

But cosd cos + sind sing = cos(d — ¢) = cos(p — 8). If we replace
this latter expression with its haversine equivalent and clean up a
bit, we arrive at the haversine formula of navigation:
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hav P_LC = hav (¢ —0) + cosp coso hav t.>

In our case, the formula gives us h.=16°46.3" for Venus (compared to
h,=16°25.1"), and h.=29°06.9" for Spica (compared to h,=28°14.1").
Of course, the reader following along with one of those rare calcula-
tors lacking a haversine button may feel free to use the Law of Cosines
instead.

Now that we know all three sides and one angle of our astronomical
triangle, getting the azimuth Z is just a matter of applying the Law of
Sines:

sinh _ sind

sint  sinZ’
The ambiguity that arises from needing to evaluate an arc sine is of
no importance here; we have been looking at the star, and we know in
what quadrant it lies. So for Venus, from sin Z = 0.98214 we deduce that
Z=79°09.3" west of North; and for Spica, from sinZ = 0.34829 we de-
duce that Z=20°22.9" west of South.

Now that Z is known, we can imagine moving forward or backward
in that direction on the water’s surface along the azimuth line (figure
9.9). As we move, only Venus’s altitude (not its azimuth) will change;
and if we move forward far enough, we will reach Venus—or rather, we
will reach the place where Venus would land if it fell directly toward the
Earth’s center. This point is called Venus’s geographical position, or GP.
As we move along the azimuth line, Venus’s altitude will increase if we
move toward Venus, or decrease if we walk away.

Assumed
position

Figure 9.9. The line of position.
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At some point in our journey back and forth along the azimuth line,
Venus’s altitude will match our observed altitude h,=16°25.1" exactly.
This point might be our true position. But we're not quite sure of Z, and
if we turn 90° to the left or right and take a few steps, Venus will remain
at the same altitude in the sky without changing Z much. In fact, we
could take more than a few steps; we could travel in a giant circle cen-
tered at Venuss GP, and Venus’s altitude would remain the same. (As
huge as this circle is, it’s not a great circle, so it’s called a small circle.) Of
course, we don’t expect to need to travel very far to adjust our position,
so we will assume that our true position is somewhere on the straight
line perpendicular to the place on the line of azimuth where Venus’s alti-
tude matches k. We then draw the line of position, or LP, at right angles
to the azimuth line, and we know that we are somewhere on that line.
But how far from our AP should we travel to reach the LP?

The intercept, the distance from the AP to the LP, is where our method
derives one of its names, and it is surprisingly easy to find. Figure 9.10
is the cross section of the universe through the center of the Earth that
contains Venus. Since Venus is so far away, the lines of sight from both

True
position

Figure 9.10. Finding the intercept.
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our assumed and true positions are essentially parallel; it is the differ-
ence in position on the Earth’s surface that causes h,, to differ from h.
Form a right triangle by drawing a tangent to the circle at the AP and
joining it to the line of sight from the Earth’s center to Venus. The angles
in this triangle will be 90°, h, and k. Do the same from the true posi-
tion. The angle at the center of the Earth between the assumed and true
positions will be i1, — h. = h.— h,. But this angle, measured in minutes
of arc, is equal to the distance on the surface measured in nautical miles!
So to calculate the intercept, we need only determine 60 (h. —h,). In
Venus’s case the intercept is 21.2 nautical miles; for Spica it is 52.8 nauti-
cal miles.

We are now ready to use a plotting chart, a simple version of which is
shown in figure 9.11. Our assumed position is at the center of the circle,
so we may mark 1=126°45"W, ¢ =47°30'N on the chart as in figure
9.12. Since the two vertical radii are marked off in units of 60, it is con-
venient to assume that the circle has a radius of 60 nautical miles (if
the intercepts had been smaller, we could have used a smaller scale). So

36
40 350

oL

08

¢ 061 opL oLv O

Figure 9.11. A simple blank nautical chart.
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Figure 9.12. A nautical chart containing the fix for our ship.

we mark the top and bottom vertical lines 60 nautical miles above and
below 47°30, at ¢ = 48°30" and ¢ = 46°30". The longitude scale, however,
is different. From exercise 9 of chapter 2, recall that the east-west dis-
tance corresponding to one degree of longitude decreases as one moves
north, according to the cosine of the latitude. We can work out this scale
cleverly without a needing a calculator to compute the cosine: mark two
places on the circle 47°30" up and down from the rightmost point of the
circle, and draw a vertical line. Do the same on the left. The three verti-
cal lines will each be 1° apart in longitude.

Earlier we calculated Venuss azimuth to be 79°09.3" west of North,
so we draw the azimuth line onto our chart. The intercept is 21.2 nauti-
cal miles, so we must move that distance away from the center of the
circle. But in which direction? In this case we must travel away from
(rather than toward) Venus or disaster will ensue. As seen on figure
9.10, if h. > h, then we must move away from Venus, and if h.<h, we
must move toward it. Navigators remember this rule by memorizing
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the phrase “computed greater away.” Now that we have located Venus’s
intercept (to the right of and a little below the center), we draw a per-
pendicular. This marks Venus’s line of position (LP), and we know that
our ship is somewhere along it.

Of course, one LP isn’t enough to pin down our location, but we had
the foresight to make two observations. So we leave the reader to repeat
the process for Spica and get a second LP. The intersection of the two
LP’ is our fix, our best estimate of our true position. Occasionally navi-
gators make three observations and draw three LP’s. Since the three LP’s
are unlikely to intersect at precisely the same point but instead form a
small triangle, the navigator assumes that the ship is located at the most
dangerous point within the triangle. Better safe than sorry.

Figure 9.12 shows our resulting fix. We can now see why taking ob-
servations of two objects with azimuths differing by about 90° was such
a good idea: our LP’s are almost at right angles to each other, produc-
ing a much more precise intersection point than if the LP’s had been
nearly parallel. In our chart, we find that our ship is actually around 55
nautical miles northeast of the AP, at about ¢ =48°15'N, 1 =126°00"W;
this position is indicated in figure 9.13. We are much closer to Juan de
Fuca Strait than we thought (less than 50 nautical miles rather than 100),
and we need to approach the Strait heading almost due east, rather than
northeast. It's a good thing we have a navigator on board.

Figure 9.13. The assumed position of our ship, and the true position northeast of it.
Copyright 2012 TerraMetrics, Inc. www.terrametrics.com. © 2012 Google.
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Now the secret may be revealed. The true position in this example,

from which the altitude observations were obtained using astronomical
software, is exactly ¢ =48°15'N, 1 =126°00"W. The true position is so
close to our fix that the thickness of the lines at the intersection of the
two LP’s covers both locations. We have pinpointed our ship to a dis-
tance of less than 1000 feet.

Exercises

1. Finding one’s terrestrial latitude is as easy as measuring the altitude of

the North Star, but sailors often used a more accurate method called

the “noon sight” Near local noon in the northern hemisphere, the Sun
crosses the meridian (the great circle through the north and south points
of the horizon and the zenith) in the south, reaching its maximum
altitude. For a number of minutes around noon its altitude is almost
constant. The sailor repeatedly measures the Sun’s altitude near noon, and
considers the noon sight to be the largest measured value.

(a) Use the concepts from chapter 2 to explain how this measurement
determines the local latitude. One quantity from the Nautical Almanac is
needed; which one?

(b) On June 23, 2011, a sailor gets a noon solar altitude of 60°25.1". What
is the local latitude? (Use the Nautical Almanac, paper or online, to get
the quantity you need.)

. Make an hour angle diagram for Mars and Altair using your local lon-
gitude, for June 22, 2010 at 0900 GMT. Use the page from the Nautical
Almanac reproduced in figure 9.6.

. (a) Since the haversine formula is an alternate formulation of the Law of
Cosines, it clearly applies to any triangle, not just the astronomical one.
Express the formula in terms of a general triangle with sides a, b, c and
angles A, B, C.

(b) Solve a =52° b =39°, c = 44° using the haversine formula.

. (a) Show that sina sinb =hav(a + b) —hav(a — b). (Hint: Use the cosine
addition and subtraction formulas.)

(b) Substitute this result into the equation you generated in question 3(a),
to obtain the following formula that involves only haversines:

hav ¢ = hav(a—b) + [hav(a+b) — hav(a —b)] hav C.

[Nielsen/Vanlonkhuyzen 1944, 119]
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5. The formula derived in the previous exercise may be used to build a
device called the haversine nomogram, capable of solving some spherical
triangles visually. Make a scale as in figure E-9.5.1, where the position of
each tick mark corresponds to the haversine of that angle. (The more tick
marks you can make, the more accurate your result.) Align three of these
scales in a rectangle opened at the top, as in figure E-9.5.2. Imagine that
the triangle has sides =287, b=52°, and ¢ =106°. Then a — b = 35" and
a+b=139°. Draw a diagonal line from 35° on the left scale to 139° on the
right scale. Then draw a horizontal line from the 106° point on the right
scale and move down to the bottom scale when you reach the diagonal
line. The angle at that place, 115°, is the value of C.

(a) Solve the triangle of question 3(b) using a haversine nomogram.

(b) Explain why this method produces the correct answer. (Hint: use the
formula of question 4(b), solved for hav C.)

(c) Devise a method to use a haversine nomogram to find the third side
if two sides and their included angle are given. [Nielsen/Vanlonkhuyzen
1944, 120-121]

0 0.067 0.250 0.500 0.750 0.933 1.000
I ! ! I ! ! |

I T T T T T 1
0° 300 60° 90° 1200 1500 180°

Figure E-9.5.1. The haversine nomogram.
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Figure E-9.5.2. Finding an angle in a triangle with three known sides using a haversine
nomogram.
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It is early evening on June 22, 2010 and you are somewhere southeast of
the coast of Long Island, NY, hoping to sail toward Rhode Island. Your
chronometer reads June 23, 2010, 1:00 AM GMT, and your assumed
position is ¢ = 40°05’, 1 =70°33". A little west of south you spot Antares,
and with your sextant you measure it to be 16°34.0" above the horizon.
Just north of west is Venus, with an altitude of 18°40.1". Use Saint Hilaire’s
method to determine your position. (Figure 9.6 contains the appropriate
page from the Nautical Almanac. The solution is ¢ =40°25", A =71°14"))

. Make up your own navigation problem. Do this with astronomical soft-

ware as follows: choose true and assumed positions with values of ¢ and 1
less than one degree apart. In your software, set your location to the true
position, find a time near sunrise or sunset when two objects are visible
with azimuths separated by around 90°, record their altitudes, and note
the time in GMT. Now discard the true position, and proceed with Saint
Hilaire’s method. You may use the online Nautical Almanac if necessary.
When you are finished, compare your fix with the true position.

. Perform the Saint Hilaire calculations in this chapter, but use the Law of

Cosines directly on the astronomical triangle rather than the haversine
formula. Round all trigonometric quantities to three decimal places for
both methods. Assuming that you have a haversine button on your calcu-
lator, which method is faster? Does one give a more accurate result than
the other?

. (Assumes calculus) Find the derivative of the Sun’s altitude with respect

to local hour angle. Explain from the result why solar observations taken
when the Sun is in the East or West were preferred to when the Sun is in
the South (near noon). [courtesy of Joel Silverberg]

Sumner’s method: In the late morning of December 17, 1837 Thomas
Hubbard Sumner was approaching St. George’s Channel between Ireland
and Wales on his way to Scotland, having departed three weeks earlier
from South Carolina. Unsure of his position since his last fix 600 miles
back and dealing with bad weather conditions, he was fearful of encoun-
tering the dangerous rocks on the southeast tip of Ireland. The critical
checkpoint that Sumner needed to locate was Small’s Light just off the
coast of Wales; if he could sail toward it, he would be able to find safe
passage through the channel (figure E-9.10). Suddenly the clouds parted
momentarily and gave him a brief opportunity to measure the Sun’s
altitude. Spurred by necessity, he had a flash of insight that led to his new
method of navigation, and eventually inspired Saint Hilaire’s method as
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Figure E-9.10. Sumner’s Method.

well. In this exercise we shall reproduce his discovery as he described it
in 1843.

(a) Sumner’s fundamental formula on the astronomical triangle is equiva-
lent to the Law of Cosines, but it is in a form that makes logarithmic
calculation easier:

verst = 1 — cost = {cos(¢p — ) — sin h}sec¢ secd.

Explain why this formula is easier to use with logarithms, and derive it
from the Law of Cosines.

(b) By dead reckoning Sumner believed his latitude to be somewhere
around ¢ =51°37'N. Decrease this to 51°. From the Almanac we know
the Sun’s declination to be d =—23°23". At the moment when the clouds
parted, Sumner observed the Sun’s altitude to be h=12°10". Use this data
and the formula in (a) to determine the hour angle . You do not need to
use logarithms.

(c) In time units, you should have found that t =1"43"59°, which repre-
sents the time before local noon. However, Sumner needed to account for
the equation of time, a small effect that accounts for the fact that the Sun
does not quite travel through the celestial sphere at a constant speed. On
the date of Sumner’s observation the equation of time was 3"37°, which
implied that the apparent time had to be adjusted 337" earlier. Sumner’s
chronometer told him that the time was 10:47:13 AM in Greenwich.
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What is the difference between local time and Greenwich time? Multiply
by 15 to get the ship’s longitude. Plot the resulting ship’s position on the
map and call it point A.
(d) The above calculations are based on a latitude of 51°, which is 37’ less
than Sumner’s best estimate. Repeat the calculations of (b) and (c), this
time for a latitude of 52°. Plot the new position as point B.
(e) Draw a line through A and B. Drawn correctly, the line should pass
through or very close to Small’s Light. Since the Sun’ altitude is the same
at both A and B, it will also be the same at every point on the line joining
A and B. (To be precise, A and B both lie on the line of position, a very
large—but not great—circle containing all the points on the Earth’s sur-
face where the Sun’s altitude is 12°10".) In what direction is the azimuth of
the Sun with respect to this line?

Sumner reasoned correctly that whatever his true latitude was, he
had to be somewhere on the line of position. Since (luckily) the line
passes through Small’s Light, Sumner simply sailed in the direction of
his line. He soon encountered Small’s Light, passed safely through St.
George’s Channel, and changed the history of navigation. [thanks to Joel
Silverberg]

Where to Go from Here

Our tour through the world of spherical trigonometry has ended, but
there are countless journeys that may be taken from here. Todhunter
and Leathem’s 1907 textbook and Casey’s 1889 treatise are particularly
rich sources for further exploration of mathematical topics:

o the properties of small circles (not necessarily small in stature,
but not great circles) on their own, or inscribed in and circumscribed
around spherical triangles;

o aduality between theorems on small circles and on great circles;

» Harts Circle, a spherical analog to the nine point circle in plane
geometry;

« approximate formulas and the use of calculus to determine varia-
tions in quantities when certain other quantities are varied (useful in
geodesy and other practical applications).
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Also in the nineteenth century, spherical trigonometry became sub-
sumed into a more general trigonometry that included non-Euclidean
spaces. Although this did not affect the classroom and we have chosen to
skip over it here, the interested reader will find the theory both powerful
and fascinating. Seth Braver’s Lobachevski Illuminated is an extensively
annotated translation of one of the earliest works in this area.

The reader may wish to explore extensions of spherical trigonometry
in astronomy and navigation; in the literature of those subjects you will
find many variants to the procedures shown here and even entirely new
approaches. In astronomy, consider W. M. Smart’s Textbook on Spherical
Astronomy or Simon Newcomb's Compendium of Spherical Astronomy;
in navigation, consult Charles Cotter’s History of Nautical Astronomy. If
you care to linger a while in these dusty old textbooks, you will find that
the playground of spherical trigonometry contains many more forgot-
ten delights.
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